A abordagem EWMA possui um recurso atraente: requer relativamente poucos dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é rastrear mudanças na volatilidade. Para valores pequenos, observações recentes afetam a estimativa prontamente. Para valores mais próximos de um, a estimativa muda lentamente com base nas mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado) usa o EWMA para atualizar a volatilidade diária. IMPORTANTE: a fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pelo EWMA. Os modelos ARCHGARCH são mais adequados para este fim. Um objetivo secundário da EWMA é acompanhar as mudanças na volatilidade, portanto, para valores pequenos, a observação recente afeta a estimativa prontamente e, para os valores mais próximos de uma, a estimativa muda lentamente para as mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido pela JP Morgan) e divulgado em 1994, usa o modelo EWMA para atualizar a estimativa diária de volatilidade. A empresa descobriu que, em uma variedade de variáveis de mercado, esse valor dá uma previsão da variância que se aproxima da taxa de variância realizada. As taxas de variação realizadas em um determinado dia foram calculadas como uma média igualmente ponderada nos 25 dias subseqüentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre a estimativa EWMA e a volatilidade realizada. Finalmente, minimize o SSE variando o valor lambda. Soa simples é. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, as pessoas da RiskMetrics escolheram os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utilize preços diários, HILO e OPEN-CLOSE. Q 1: podemos usar o EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade do EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWMA retorna uma constante Valor: Como calcular as médias móveis ponderadas no Excel Usando o Suavização exponencial Análise de dados do Excel para Dummies, 2ª edição A ferramenta Exponential Smoothing no Excel calcula a média móvel. No entanto, os pesos de suavização exponencial são os valores incluídos nos cálculos da média móvel, de modo que os valores mais recentes têm um efeito maior no cálculo médio e os valores antigos têm um efeito menor. Essa ponderação é realizada através de uma constante de suavização. Para ilustrar como a ferramenta Exponential Smoothing funciona, suponha que you8217re volte a olhar a informação diária média de temperatura. Para calcular médias móveis ponderadas usando o suavização exponencial, execute as seguintes etapas: Para calcular uma média móvel suavemente exponencial, primeiro clique no botão de comando Análise de Dados tab8217s Data. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item Suavização exponencial da lista e clique em OK. O Excel exibe a caixa de diálogo Suavização exponencial. Identifique os dados. Para identificar os dados para os quais deseja calcular uma média móvel suavemente exponencial, clique na caixa de texto Intervalo de entrada. Em seguida, identifique o intervalo de entrada, digitando um endereço de faixa de planilha ou selecionando o intervalo da planilha. Se o seu intervalo de entrada incluir um rótulo de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas. Forneça a constante de suavização. Digite o valor constante de suavização na caixa de texto Fator de Damping. O arquivo de Ajuda do Excel sugere que você use uma constante de suavização entre 0,2 e 0,3. Presumivelmente, no entanto, se você estiver usando essa ferramenta, você tem suas próprias idéias sobre o que é a constante de suavização correta. (Se você não tiver dúvidas sobre a constante de suavização, talvez você não precise usar essa ferramenta.) Diga ao Excel onde colocar os dados médios móveis suavemente exponencial. Use a caixa de texto do intervalo de saída para identificar o intervalo da planilha na qual deseja colocar os dados médios móveis. No exemplo da planilha, por exemplo, você coloca os dados médios móveis no intervalo da planilha B2: B10. (Opcional) Gráfico dos dados suavizados exponencialmente. Para traçar os dados exponencialmente suavizados, selecione a caixa de seleção Gráfico. (Opcional) Indique que deseja obter informações de erro padrão calculadas. Para calcular erros padrão, selecione a caixa de seleção Erros padrão. Excel coloca valores de erro padrão ao lado dos valores médios móveis suavemente exponencial. Depois de terminar de especificar qual a média móvel que deseja calcular e onde deseja que ela seja colocada, clique em OK. O Excel calcula a informação média móvel. Calculando a volatilidade histórica Usando EWMA A volatilidade é a medida de risco mais utilizada. A volatilidade neste sentido pode ser a volatilidade histórica (uma observada a partir de dados passados), ou pode implicar a volatilidade (observada a partir dos preços de mercado dos instrumentos financeiros). A volatilidade histórica pode ser calculada de três maneiras, a saber: volatilidade simples, movimentação ponderada exponencialmente Média (EWMA) GARCH Uma das principais vantagens do EWMA é que ele dá mais peso aos retornos recentes ao calcular os retornos. Neste artigo, analisaremos como a volatilidade é calculada usando o EWMA. Então, vamos começar: Etapa 1: Calcule os retornos de registro da série de preços Se estamos olhando os preços das ações, podemos calcular os retornos lognormal diários, usando a fórmula ln (P i P i -1), onde P representa cada Dias de fechamento do preço das ações. Precisamos usar o log natural porque queremos que os retornos sejam compostos de forma contínua. Teremos retornos diários para toda a série de preços. Passo 2: Quadrado dos retornos O próximo passo é o de tirar o quadrado de retornos longos. Este é realmente o cálculo da variância ou volatilidade simples representada pela seguinte fórmula: Aqui, você representa os retornos e m representa o número de dias. Etapa 3: atribuir pesos Atribua pesos de forma que os retornos recentes tenham maior peso e os retornos mais antigos tenham menor peso. Para isso, precisamos de um fator chamado Lambda (), que é uma constante de suavização ou o parâmetro persistente. Os pesos são atribuídos como (1-) 0. Lambda deve ser inferior a 1. A métrica de risco usa lambda 94. O primeiro peso será (1-0,94) 6, o segundo peso será 60,94 5,64 e assim por diante. Em EWMA todos os pesos somam para 1, no entanto eles estão diminuindo com uma proporção constante de. Passo 4: Multiplica Retornos ao quadrado com os pesos Etapa 5: Tome o somatório de R 2 w Esta é a variância EWMA final. A volatilidade será a raiz quadrada da variância. A seguinte captura de tela mostra os cálculos. O exemplo acima que vimos é a abordagem descrita por RiskMetrics. A forma generalizada de EWMA pode ser representada como a seguinte fórmula recursiva:
No comments:
Post a Comment